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Information transfer with rate-modulated Poisson processes:
A simple model for nonstationary stochastic resonance
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Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles
of ion channels. An exact expression for the information gain is obtained for the Poisson process with the
signal-modulated spiking rate. This result allows one to generalize the conventional stochastic re€®Rance
problem(with periodic input signalto the arbitrary signals of finite duratidgnonstationary SR Moreover, in
the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise
ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent
similarity in the limit of weak signals.
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[. INTRODUCTION undermines the active role of input signal. Moreover, for the
continuous-time information channels the mutual informa-
The problem of stochastic resonan@R), i.e., a noise- tion is very difficult to find in an analytical form even for the

improved signal transduction in nonlinear systems has prosimplest case of input signals with Gaussian statistics. Here
duced a huge literature summarized by two recent reviewpractically no exact analytical results are available with the
[1,2]. Especially, the search for similar effects in sensoryProminent exception provided by the Gaussian information
biology became popular over the ye#s-5]. Here, simple ~ channel with the Gaussian input sigia8,19. For the Pois-

models are very useful, especially if they allow for an ana-Sonian information channel considered in this work, an ap-

lytical treatment. The so-called nondynamical model of gRProximate analytical expression for the rate of mutual infor-

involving the Poisson process with the signal and noise delation has been obtained in the case of weak Gaussian

pendent spiking rat¢6—9] has been applied with various signals only{10].

modifications to SR in sensory neurdi§ and ensembles of Is it possible to _deflne a unidirectional measure of infor-
: : o . - mation transfer which, on the one hand, does not suffer from
ion channelg9]. The attractive simplicity of this model still

) . . the above-mentioned drawback of thenformation and, on
favors much interest in the SR community.

Th bl £ inf tion t ¢ h the Poi .__the other hand, can be used also for nonrandom, regular sig-
€ probiem ot information transter with the FoISsonian, 455 Ap answer in the affirmative is represented by the so-

spike train in sensory neurons has also been addressedjeq information gain, or relativeKullback) entropy
[4,5,10. In the related studies two different information 115 20 23, However, the exact analytical results here are
measures have mainly been utiliz¢d:the mutual informa-  yery rare too. Recently, the information gain has been found
tion [4,5,10-12 and(ii) the so-calledr information[13,14 5 an exact analytical form for the two-state McNamara-
(see a clarifying note concerning theinformation in Ref.  wiesenfeld mode[22] of the stochastic resonance and ap-
[15]). The latter one represents the difference of tentro-  plied to SR in single ion channefd5]. The use of this in-
pies of the spike train in the absence and in the presence offarmation measure allows one to characterize the
useful signal.7 information presents an unidirectional mea- nonstationarySR, i.e., SR with arbitrary signals of finite
sure that describes the transfer of information from the inputiuration[15]. In the present work we show that the informa-
signal to the signal-modulated output Poissonian train. Sincéion gain can be found exactly also for another fundamental
the 7 entropy essentially depends on the time resolution ofnodel of SR represented by rate-modulated Poisson process
measurement r and even diverges in the limk7—0 [16],  [8,9]. Moreover, we discuss the interrelation of this informa-
the 7 information suffers from this drawback as well. Thus, it tion measure with such popular measure of the conventional,
cannot serve as avbjectivemeasurg15]. periodic SR as signal-to-noise ra{iSNR) (cf. Refs.[1,2]).

One of the possible solutions of this difficulty goes back
to Shannon[17] and consists in the use of random input
signals taken from a stationary distribution. Then, the mutual
information (per unit of timg can be defined10,17 (see A rather simple and elegant model of SR based on the
also below that represents a kind ohonlinear cross- theory of random point processes has been introduced by
correlation measure between the input and output stochasti®Viesenfeld, Pierson, Pantazelou, Dames, and Moss in Ref.
signals. As such, this measure is bidirectional. It consider§8] in an application to the stochastic resonance in sensory
the input and output signals on the equal footing and therebgeurons. This model has been further generalized and ap-

plied to SR in ion channels by Bezrukov and Vodyahéy
The approach consists in modeling some shot-noise-like
*Also at Bogolyubov Institute for Theoretical Physics, Kiev, events, for example, the neuron spike activity, or the ion
Ukraine. current spikes across a membrane by a nonstationary Poisson

1. MODEL
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process. Let us consider such Poisson process of the currevif(t) with an extremally high corner frequendy and the

spikesl (t) =1,=;8(t—t;) [23] of strengthly occurring ran-  noise intensityZ, this will result in a renormalization db,

domly within some time interval0,T]. The spikes are as- D—D+ 6D, with 6D«/, i.e., in the local heatinf25]. Al-

sumed to occur at the time pointsthat are independently though such a model assumpti@ncal heating is not quite

distributed with the exponential probability density function realistic for the realm of ion channels, nevertheless it is use-

f(t):r(t)exp[—f{)r(r)dr]. Here, the variable rate of spikes ful to illustrate the main ideal26]. Besides, the considered

r(t) has been introduced. This rate depends on the externaliypodel is directly applicabléas it was originally proposedo

applied voltage signaV4(t) and the height), of an activa- the information transfer in sensory neurons, cf. R8f.

tion barrier in the absence of signai(t)=r(Uy)g[Vs(t)], Furthermore, the probability density to hasespikes in

wherer (Uo) >0 is the rate in the absence of signal @)  the time interval[0,T] is [27,2§

is some positive functiorg(V)>0,g(0)=1. 1 .

. One should note that the bot_h fu_nctlon(suo) andg(V), Qu(Tote terr, - . . | Ve(t))= —,eXF{ _f r(t)dt}

epend also on the thermal noise intengity24]. The con- s 0

crete form ofr(Uy) andg(V) should be taken from experi-

ments, or defined by an underlying microscopic model. For Xr(t)r(ts-1) - . r(ta).

the purpose of illustration of our theory we will assume in 2)

this work the same model for the spiking rate as in Refs.

[8,1], i.e., Since the spiking rate(t) depends on the input sign¥l(t),

the corresponding probability densities in Eg) are in fact
f(Uo)=r exp{ B ﬁ) conditional. The corresponding probabilities(T) to haves
0’70 D/’ spikes are given by the-dimensional time integrals of
Q(Vs)zeXF< D

Qs(Tots ts—1, - - ta),
T s T
f r(t)dt ex;{—f r(t)dt}, 3
0 0
In application to the ion channe[9], the noise intensity

D corresponds to the temperatule=kgT andq to the gat- and are normalized to the unity. The hierarchy of distribution
ing charge. If to apply an external Gaussian electric noiséunctions

Vs
a ) : (1)

1
Ps(Tlvs(t)): S_'

{QO(Tlvs(t))1Ql(Titl|VS(t))v EC 1QS(T1t31tS*li S 1tl|VS(t))1 .. }

defines the probability density functional(PDF)  voltage. Since the entropy presents a measure of our uncer-

P[I(t)|Vg(t)] of the current fluctuations. tainty concerning the particular realization It) from the
given ensemble, the lowering entroggiue to the signal
IIl. INFORMATION GAIN AND MUTUAL INFORMATION means getting informatiofabout the signal

To define the mutual information, one assumes that the

Let us assume first that the voltage sigha(t) is not  jnput voltage signals are also random and can be character-
random and represents some arbitrary, but otherwise fixegeg by the corresponding PO V(t)]. The ensemble av-
function of time. Practically this means that the experimentseraging over the voltage realizations is defined(as. )
are performed repeatedly applying one and the same time.':fD[VS(t)] ...PJV<(t)]. Then, the mutual information
dependent voltage fortds(t). PDF in the absence of signal petweenv(t) andl(t) can be defined as the averaged infor-
can be denoted @[ I (t)] with {Q{*)(T,ts, ... ty)}. Then,  mation gain with respect to the statistical distribution of the
the information gairK;[V(t)] obtained from the observa- current realizationaveragedoverV(t), i.e., with respect to
tion of the current fluctuations in the absence and in thGP[I(t)]::(P[I(t)|VS(t)])S:
presence of voltage signal can be defirgd bits) by the
functional integral

MT[|<t>:vS<t>]=< [ puwipnmpvaw

| (P[l(t)|Vs(t)])
2\ PLI(Y)]

The information gain measures the deviatitowering by ~ {Note the distinction betweeR[1(t)] andPg[I(t)]!} More-
K[V4(t)]) of the entropy of current fluctuations from the over, noting that the joint PDF dft) andV(t) is obviously
equilibrium (defined by stationary current fluctuations in the P[1(t),V(t)]=P[1(t)|Vs(t) P Vs(t)], the latter definition
absence of time-dependent voltage sigdale to the applied can be recast in the form

P[I (t)le(t)])

KT[Vs(t)]=f D[I(t)]P[I(t)|Vs(t)]|092< P[]

@ ©

021909-2



INFORMATION TRANSFER WITH RATE-MODULATED . . . PHYSICAL REVIEW E64 021909

MRl 0:Vs01= [ | BIHOIDIVA® TP (0. V(0] KT[vs(t)]=Q0<T|vs<t>)|og2%
o (t
PLI(1),Vs(1)] ) -
X'°92( PO IPIVAD]) © 15 T
s= 0 0
This latter form makes transparent the fact that the mutual < deT Qult, 7 |V4(1))
information is a symmetric measure with respect to its argu- o resisrrriHTs

ments and thus presents a nonlinear cross correlation be-
tween|(t) and V4(t). This information measure is in fact Qst, s, . .., 1| V(1))
bidirectional: “What the output signal knows about input, QOXt, 7 )
. . y s yigy » oyl ]
the input signal knows about output.
_It is_ not difficult to prove that the avera_ged information The calculation of integrals and series in E§) with the
gain gives an upper bound for the mutual informatjdb],  probability densitieg2) is straightforward due to the factor-

Xlog,

®

i.e., ization property in Eq(2) and yields our main result
1 (7 r(t)
ML 1(t): V(D) I<(K{[ V(1) ])s. 7 KT[Vs(t)]=mfo {r(Uo)—r(t)H(t)ln(r(UO)) dt.
9

This inequality is very important in the practice since not thenge that the result9) is exactwithin the considered model.
mutual information in itself presents the main interest, butit -an also be obtained from one found previously for the
rather the information capacity. This latter quantity is defined,,o_state Markov model in Ref15] in the limit where the
as the maximum of mutual information over all possible in-yq_state system is symmetii®,(t) = P (t)=1/2] and the

. . . . [0} [
put signals with the fixed root mean squatems) amplitude  gjgna| modulates the height of the activation barrier. Using

of signals (cf. [17,19)). The information capacity sets the s result we can address the general case of SR including
theoretical maximunfior information that can be transferred nonstationary signals of finite duration, i.@onstationary

across the information channel within the given time intervalgg |, particular, for weak signals we obtain approximately

[0,T] [19]. In many cases it is simpler to findK[V(t)])s ’

and to establish in such a way the upper bound for the infor- K[ V4(t)]=R(Uy,D)&. (10

mation capacity. Moreover, in some casesg., for weak

signals this upper bound can coincide within the accuracy ofln Eqg. (10),

the weak-signal approximation with the information capacity 1

(23] . - . R(Uo,D)= 515 (Uo)
In the experimental realm, the finding of mutual informa- 2In2

tion constitutes a rather formidable task because it assumes

the two ensemble averaging, both over inputitage and is the form factor, which characterizes the system, and

output(curren} signals. On the contrary, the practical feasi-

bility of the information gain is beyond questions. This task

can be accomplished, e.g., by building up the corresponding

histograms of the current realizations with the given time

resolutionA 7, like in Ref.[14]. Then, there exist™? (where is the total intensity of input signal. For the model in Et).

N=T/A7) different realizations of “all-or-nothing” current we obtain

records and in practice the respective functional integral is

approximated by a multidimensional sum. The actual value 1 q? F{ UO)

2
ﬂg(Vs)) )

YA

V4=0

£= J VE(t)dt (12)
0

of the information gain can be estimated from the calculation R(Uo,D)= 21n 2r0§ex "D/ (13
of the corresponding approximations at differént by ex-
trapolating those to the limih 7—0. Unlike to the case of  The form factor in Eq(13) exhibits a typical stochastic reso-
information in RefS[13,14:-| (Where such a limit does not nance behavior versus the noise intenﬁjty
exist in principle the discussed limit should exist for the
information gain. The information gain presents thus a rea- V. RATE OF INFORMATION GAIN AND THE
sonable alternative to the information that isde factothe SIGNAL-TO-NOISE RATIO
most popular information measure at prederg, 14].
Let us consider now the case of a periodic input signal
with the frequency) and the amplitude,

IV. EXACT EXPRESSION FOR INFORMATION GAIN
Vg(t)=Acoq OQt). (14
The precise meaning of the functional integral in E.
for the studied model is as follows Then, one can define the rate of information gain

021909-3
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K[ V(1) )
Ry= lim il Ts( ] _ (15 £ 0.0008
T g 0.0006
For the model in Eq(1) an elementary calculation from Eq. 8 0.0004
(9) yields 2 SR b 2
5 0.0002 Inform. gain
1 UO qA qA qA % OTIN. ZAIN  m—
R|=ﬁroex —3 1—|OE +3|13 , ~ 0
n 0 20 40 60 80 100

(16)
Noise intensity D [units of meV]
wherel y 4(z) are the modified Bessel functions. Note that the
rate of information gain has the same dimensionality of fre- FIG. 1. Dependence of the rate of information gain and the
quency as SNR. Thus, it is interesting to compare the rate cfcaled signal-to-noise ratio on the background noise intefsity
information gain and SNR for the considered model. Thethe case of a weak periodic signal. The barrier height is sétgto
corresponding expression for SNR has been obtained in Ref; 150 meV.

[8] and in our notatiorfwhich follows the review 1]) reads ) ) _
the SNR and the information gaitKullback entropy for

L[ GA strongsignals, beyond the linear response regime, which has
17 D U been observed in the numerical experimd@ts. It is inter-
Rsn= 47-rro—ex;< — —°> (17 esting to note that both in this work and in RE21] the
Iy q_A) D maximum of the information gain is attained db
D ~45 meV(cf. Fig. 4 in[21]), while the maxima of SNR are

somewhat different. One has to stress that it is not possible to
By comparison of Eq(16) and Eq.(17) in the case of weak compare the both situations directly, because in the case of
signalsqA<D one can establish the following important re- Schmitt trigger the input signal modulates the energy differ-
lation ence between two states, rather than the energy barrier be-
tween two states with equal energy. Nevertheless, the general
tendency becomes rather obvious.

The nonequivalencebetween the information gain and
SNR is especially clearly demonstrated in Fig. 3 for the sig-
where both theR, andRgy are proportional td&R(Ug,D) in nal amplitudeA=150 mV. In this case, the maximum in the
Eq. (13) and both exhibit stochastic resonance. information gain disappears, whereas g, still exhibits a

It is worth noting that for weak Gaussian signals with themaximum. For the suprathreshold amplitude>158 mV
rms amplitudeA,,s=A, the information gain in Eq(18)  the stochastic resonance in the signal-to-noise ratio disap-
defines, after averaging over the signal realizations, also thgears as wel(not shown.
information capacitywith the factor of 2[29]). This fact can
be proven making use of the Shannon’s formula for the mu-
tual information ratg19]. The Shannon’s formula has been
originally derived, strictly speaking, for Gaussian informa- In this work we have addressed a simple model of sto-
tion channels only(cf. Ref. [30]). However, it has been chastic resonance in sensory neurf8isor ion channel$9]
shown in Ref[10] that the Shannon’s formula applies also from the point of view of the information transfer. The model
for the considered Poissonian information channel if the inconsiders some shot-noise-like events as nonstationary Pois-
put Gaussian signals are weak. son process with the signal-dependent spiking rate. This rate

To sum up, in the limit of weak signals the knowledge of depends on the background noise intensity as a parameter,
SNR for a harmonic signal completely determines both thd.e., it is assumed that neither background noise, nor signal
rate of information gain for the periodic signal and the infor-

Rsn
R~ 4minz’

(18)

VI. CONCLUSIONS

mation capacity for the Gaussian aperiodic signals. Besides, 0.14
SNR characterizes also the information gain for small signals g 012
with finite duration. This remarkable result is illustrated in A o1
Fig. 1. g o0l /0 LecTTTTTme-s
Nevertheless, for strong signals the analogy between SNR 8 0.06
and information gain breaks down. To demonstrate this fact = , A=100mV
we used the following parameters that resemfalthough B 004 S/ SNR/47ln2 ...
arenot directly related tpthat used for the Schmitt trigger in 2 002 . Inform. gain ——
Ref. [21]. We set the barrier height td,=150 meV, the Moo
0 20 40 60 80 100

gating charge to the elementary charge;e, and the signal
amplitude toA=100 mV. The numerical comparison be-
tween the rate of information gain and SNR is depicted in
Fig. 2. It explains in principle th@onequivalencdetween

021909-4

Noise intensity D [units of meV]

FIG. 2. Same as Fig. 1, in the case of a strong signal.
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and displays a typical SR behavior, like in Fig. 1. Another

A=150mV interesting point is that the information gain depends in the
SNR/d7in?2 -.- discussed case only on the total intensity of the signal given
Inform. gain — by Eg. (12). This means that the signals of equal intensity

produce equal information gains, no matter how different the
form of signals is.

Furthermore, the consideration of the rate of information
gain in the case of a periodic signal allows one to find the
similarity and the distinction between the rate of information
0 20 40 60 80 100 gain and the signal-to-noise ratio. Namely, we have shown
that in the case of a weak signal both measures behave iden-
tically in their dependences on the noise intensity, cf. Fig. 1.

FIG. 3. Same as Fig. 1, in the case of signal with the thres-This similarity is remarkable indeed, because the meaning of
hold amplitude. both measures is quite different. In fact, the discussed simi-

) . . larity is virtually known in the literaturéalthough for a dif-
can introduce the correlations among spikes. Of course, thigent information measure—information capacity, cf.
is an idealization. Nevertheless, such a simple model is Very19.4,10,30). However, in this work we have explicitly
useful as one of the basic models for the stochastic resqsnown that this similarity holds in the case of weak signals
nance, cf[1]. The meaning of the noise is context depen-onyy. For strong signals it is not valid anymore, cf. Fig. 2,
dent. In application to the ion channels, it is the thermal,:ig_ 3, and Eq(16) vs Eq.(17). This fact becomes especially
noise. If the external noise is addgd, one assumes that the jear for the signal with the threshold amplituieig. 3,

corner frequency of this added noise is so high that it resultghere SNR still displays the stochastic resonance behavior,
in the renormalization of the thermal noise intensity only. \yhereas the information gain does not.

The main result of this work is the expressi@ for the
information gain that measures the lowering of the entropy
of thg Poissonian spike train due to the applie'd signal. Since ACKNOWLEDGMENTS
the signal can be of arbitrary form and duration, our result
allows to quantify thenonstationarySR. Here, in the case of This work has been supported by Deutsche Forschungs-
weak signals, an approximate result in EG9)—(12) readily = gemeinschaft, SFB 486, project A10. It is my pleasure to
follows. This latter result has a remarkable feature. The ocacknowledge the hospitality of Dr. Sergey Bezrukov and the
currence of stochastic resonance depends merely on the forNational Institutes of HealtliBethesda, U.S.A, where this
factor (11). In the case of an Arrhenius rate in Eq) this  work has been written, as well as the fruitful discussions
form factor has the same functional form&s, in Ref.[8]  with Professor Peter h@gi and Professor Sergey Bezrukov.

N
W

[\

—
—  ta

e
th

-

Rate of inform. [in r]

=]

Noise intensity D [units of meV]

[1] L. Gammaitoni, P. Haggi, P. Jung, and F. Marchesoni, Rev. [12] L.B. Kish, G.P. Harmer, and D. Abbott, Fluct. Noise Lel.

Mod. Phys.70, 223(1998. L13 (2002.

[2] V.S. Anishchenko, A.B. Neiman, F. Moss, and L. Schimansky-[13] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W.
Geier, Sov. Phys. Uspl2, 7 (1999 [Usp. Fiz. Nauk.169, 7 Bialek, Spikes: Exploring the Neural Cod#IT Press, Cam-
(1999]. bridge, MA, 1997.

[3] J.L. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, Natur¢14] S.P. Strong, R. Koberle, R.R. de Ruyter van Steveninck, and
(London 365, 337(1993. W. Bialek, Phys. Rev. Leti80, 197 (1998.

[4] J.E. Levin and J.P. Miller, Naturd.ondon 380, 165 (1996. [15] I. Goychuk and P. Haggi, Phys. Rev. B61, 4272(2000.
[5] J.J. Collins, C.C. Chow, and T.T. Imhoff, Natuitsondon 376, [16] P. Gaspard and X.-J. Wang, Phys. R2p5 292 (1993.

236 (1995; Phys. Rev. B52, R3321(1996. [17] C. Shannon, Bell Syst. Tech. 27, 379(1948; 27, 623(1948.
[6] Z. Gingl, L.B. Kiss, and F. Moss, Europhys. Left9, 191 [18] M.S. Pinsker, Dokl. Akad. Nauk SSS#9, 213 (1954); Infor-
(1995. mation and Information Stability of Random Variables and
[7] P. Jung, Phys. Lett. 207, 93 (1995. ProcessegHolden-Day, San Francisco, 1964
[8] K. Wiesenfeld, D. Pierson, E. Pantazelou, Ch. Dames, and H.19] C. Shannon, Proc. IRB7, 10 (1949.
Moss, Phys. Rev. Letf72, 2125(1994. [20] S. Kullback and R.A. Leibler, Ann. Math. St22, 79 (1951);
[9] S.M. Bezrukov and I. Vodyanoy, Natur&ondon 378 362 S. Kullback, Information Theory and Statistic@Viley, New
(1995; 385 319(1997; Chaos8, 557 (1998. York, 1959.

[10] W. Bialek and A. Zee, J. Stat. Phys9, 103(1990; W. Bialek, [21] A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L.
M. DeWeese, F. Rieke, and D. Warland, Physic209, 581 Schimansky-Geier, and J. Freund, Phys. Rev. L#&t.4299
(1993; M. DeWeese and W. Bialek, Nuovo Cimento 17, (1996.

733(1995. [22] B. McNamara and K. Wiesenfeld, Phys. Rev. B9,

[11] A.R. Bulsara and A. Zador, Phys. Rev.58, R2185(1996. 4854(1989.

021909-5



IGOR GOYCHUK

[23] We assume here the spikes be modeled by the Digésc-
tion. This particular choice is not principal for the information
theory. The spikes of finite width could be considered without
further complications. This would not affect the calculation of
the information gain. However, the finite width of spikes
would, strictly speaking, modify the calculation of the spectral
measures such as signal-to-noise ratio in @&d).

PHYSICAL REVIEW E 64 021909

Ref.[9] is that in Ref[9] the time scale of thaddednoise can
interfere with the time scale of spikes. This introduces the
mutual correlation among the interspike intervals. Such a com-
plication is beyond the scope of present work. For simplicity
we assume that the discussed time scales are well separated
(added noise is much faster than the spiking )rated thus
neglect such induced correlations.

[24] Poisson-like process results from the activated barrier crosg§27] R.L. Stratonovich,Topics in the Theory of Random Noise

ings due to some background thermal noise. It is assumed that

(Gordon and Breach, New York, 1963/0l. 1.

the time scales of the thermal noise, barrier crossing, and inf28] N.G. Van KampenStochastic Processes in Physics and Chem-

terspike intervals are well separated.

[25] P. Reimann and P. Haggi, in Surmounting Fluctuating Barri-
ers: Basic Concepts and Resuledited by L. Schimansky-
Geier and T. Pschel, Lecture Notes in Physi¢Springer, Ber-
lin, 1997, Vol. 484, pp. 127-139.

[26] The main distinction between the two models in R&f.and in

021909-6

istry, 2nd, ed.(North-Holland, Amsterdam, 1992

[29] The factor of 2 appears because the mutual information and the

information capacity are defined with the rms amplitudlg,g
of random signals whereas the SNR is defined with the corre-
spondingamplitudeof periodic signalA=A, s, cf. Ref.[30].

[30] I. Goychuk and P. Haggi, New J. Physl, 14 (1999.



