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Information transfer with rate-modulated Poisson processes:
A simple model for nonstationary stochastic resonance

Igor Goychuk*
Institute of Physics, University of Augsburg, Universita¨tsstrasse 1, D-86135 Augsburg, Germany
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Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles
of ion channels. An exact expression for the information gain is obtained for the Poisson process with the
signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance~SR!
problem~with periodic input signal! to the arbitrary signals of finite duration~nonstationary SR!. Moreover, in
the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise
ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent
similarity in the limit of weak signals.
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I. INTRODUCTION

The problem of stochastic resonance~SR!, i.e., a noise-
improved signal transduction in nonlinear systems has p
duced a huge literature summarized by two recent revi
@1,2#. Especially, the search for similar effects in senso
biology became popular over the years@3–5#. Here, simple
models are very useful, especially if they allow for an an
lytical treatment. The so-called nondynamical model of
involving the Poisson process with the signal and noise
pendent spiking rate@6–9# has been applied with variou
modifications to SR in sensory neurons@8# and ensembles o
ion channels@9#. The attractive simplicity of this model stil
favors much interest in the SR community.

The problem of information transfer with the Poissoni
spike train in sensory neurons has also been addre
@4,5,10#. In the related studies two different informatio
measures have mainly been utilized:~i! the mutual informa-
tion @4,5,10–12# and~ii ! the so-calledt information@13,14#
~see a clarifying note concerning thet information in Ref.
@15#!. The latter one represents the difference of thet entro-
pies of the spike train in the absence and in the presence
useful signal.t information presents an unidirectional me
sure that describes the transfer of information from the in
signal to the signal-modulated output Poissonian train. Si
the t entropy essentially depends on the time resolution
measurementDt and even diverges in the limitDt→0 @16#,
thet information suffers from this drawback as well. Thus,
cannot serve as anobjectivemeasure@15#.

One of the possible solutions of this difficulty goes ba
to Shannon@17# and consists in the use of random inp
signals taken from a stationary distribution. Then, the mut
information ~per unit of time! can be defined@10,17# ~see
also below! that represents a kind ofnonlinear cross-
correlation measure between the input and output stocha
signals. As such, this measure is bidirectional. It consid
the input and output signals on the equal footing and ther
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undermines the active role of input signal. Moreover, for t
continuous-time information channels the mutual inform
tion is very difficult to find in an analytical form even for th
simplest case of input signals with Gaussian statistics. H
practically no exact analytical results are available with
prominent exception provided by the Gaussian informat
channel with the Gaussian input signal@18,19#. For the Pois-
sonian information channel considered in this work, an
proximate analytical expression for the rate of mutual inf
mation has been obtained in the case of weak Gaus
signals only@10#.

Is it possible to define a unidirectional measure of info
mation transfer which, on the one hand, does not suffer fr
the above-mentioned drawback of thet information and, on
the other hand, can be used also for nonrandom, regular
nals? An answer in the affirmative is represented by the
called information gain, or relative~Kullback! entropy
@15,20,21#. However, the exact analytical results here a
very rare too. Recently, the information gain has been fou
in an exact analytical form for the two-state McNamar
Wiesenfeld model@22# of the stochastic resonance and a
plied to SR in single ion channels@15#. The use of this in-
formation measure allows one to characterize
nonstationarySR, i.e., SR with arbitrary signals of finit
duration@15#. In the present work we show that the inform
tion gain can be found exactly also for another fundamen
model of SR represented by rate-modulated Poisson pro
@8,9#. Moreover, we discuss the interrelation of this inform
tion measure with such popular measure of the conventio
periodic SR as signal-to-noise ratio~SNR! ~cf. Refs.@1,2#!.

II. MODEL

A rather simple and elegant model of SR based on
theory of random point processes has been introduced
Wiesenfeld, Pierson, Pantazelou, Dames, and Moss in
@8# in an application to the stochastic resonance in sens
neurons. This model has been further generalized and
plied to SR in ion channels by Bezrukov and Vodyanoy@9#.
The approach consists in modeling some shot-noise-
events, for example, the neuron spike activity, or the
current spikes across a membrane by a nonstationary Po
©2001 The American Physical Society09-1
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process. Let us consider such Poisson process of the cu
spikesI (t)5I 0( id(t2t i) @23# of strengthI 0 occurring ran-
domly within some time interval@0,T#. The spikes are as
sumed to occur at the time pointst i that are independently
distributed with the exponential probability density functio
f (t)5r (t)exp@2*0

t r(t)dt#. Here, the variable rate of spike
r (t) has been introduced. This rate depends on the extern
applied voltage signalVs(t) and the heightU0 of an activa-
tion barrier in the absence of signal;r (t)5r (U0)g@Vs(t)#,
wherer (U0).0 is the rate in the absence of signal andg(V)
is some positive function,g(V).0,g(0)51.

One should note that the both functions,r (U0) andg(V),
depend also on the thermal noise intensityD @24#. The con-
crete form ofr (U0) andg(V) should be taken from experi
ments, or defined by an underlying microscopic model.
the purpose of illustration of our theory we will assume
this work the same model for the spiking rate as in Re
@8,1#, i.e.,

r ~U0!5r 0 expS 2
U0

D D ,

g~Vs!5expS qVs

D D . ~1!

In application to the ion channels@9#, the noise intensity
D corresponds to the temperature,D5kBT andq to the gat-
ing charge. If to apply an external Gaussian electric no
x
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-
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Vn(t) with an extremally high corner frequencyf c and the
noise intensityz, this will result in a renormalization ofD,
D→D1dD, with dD}z, i.e., in the local heating@25#. Al-
though such a model assumption~local heating! is not quite
realistic for the realm of ion channels, nevertheless it is u
ful to illustrate the main ideas@26#. Besides, the considere
model is directly applicable~as it was originally proposed! to
the information transfer in sensory neurons, cf. Ref.@8#.

Furthermore, the probability density to haves spikes in
the time interval@0,T# is @27,28#

Qs„T,ts ,ts21 , . . . ,t1uVs~ t !…5
1

s!
expF2E

0

T

r ~ t !dtG
3r ~ ts!r ~ ts21! . . . r ~ t1!.

~2!

Since the spiking rater (t) depends on the input signalVs(t),
the corresponding probability densities in Eq.~2! are in fact
conditional. The corresponding probabilitiesPs(T) to haves
spikes are given by thes-dimensional time integrals o
Qs(T,ts ,ts21 , . . . ,t1),

Ps„TuVs~ t !…5
1

s! F E
0

T

r ~ t !dtG s

expF2E
0

T

r ~ t !dtG , ~3!

and are normalized to the unity. The hierarchy of distributi
functions
$Q0„TuVs~ t !…,Q1„T,t1uVs~ t !…, . . . ,Qs„T,ts ,ts21 , . . . ,t1uVs~ t !…, . . . %
cer-

the
cter-

r-
he
defines the probability density functional ~PDF!
P@ I (t)uVs(t)# of the current fluctuations.

III. INFORMATION GAIN AND MUTUAL INFORMATION

Let us assume first that the voltage signalVs(t) is not
random and represents some arbitrary, but otherwise fi
function of time. Practically this means that the experime
are performed repeatedly applying one and the same t
dependent voltage formVs(t). PDF in the absence of signa
can be denoted asP0@ I (t)# with $Qs

(0)(T,ts , . . . ,t1)%. Then,
the information gainKT@Vs(t)# obtained from the observa
tion of the current fluctuations in the absence and in
presence of voltage signal can be defined~in bits! by the
functional integral

KT@Vs~ t !#5E D@ I ~ t !#P@ I ~ t !uVs~ t !# log2S P@ I ~ t !uVs~ t !#

P0@ I ~ t !# D .

~4!

The information gain measures the deviation~lowering by
K@Vs(t)#) of the entropy of current fluctuations from th
equilibrium ~defined by stationary current fluctuations in t
absence of time-dependent voltage signal! due to the applied
ed
s
e-

e

voltage. Since the entropy presents a measure of our un
tainty concerning the particular realization ofI (t) from the
given ensemble, the lowering entropy~due to the signal!
means getting information~about the signal!.

To define the mutual information, one assumes that
input voltage signals are also random and can be chara
ized by the corresponding PDFPs@Vs(t)#. The ensemble av-
eraging over the voltage realizations is defined as^ . . . &s
ª*D@Vs(t)# . . . Ps@Vs(t)#. Then, the mutual information
betweenVs(t) andI (t) can be defined as the averaged info
mation gain with respect to the statistical distribution of t
current realizationsaveragedoverVs(t), i.e., with respect to
P@ I (t)#ª^P@ I (t)uVs(t)#&s :

MT@ I ~ t !:Vs~ t !#5 K E D@ I ~ t !#P@ I ~ t !uVs~ t !#

3 log2S P@ I ~ t !uVs~ t !#

P@ I ~ t !# D L
s

. ~5!

$Note the distinction betweenP@ I (t)# andP0@ I (t)#!% More-
over, noting that the joint PDF ofI (t) andVs(t) is obviously
P@ I (t),Vs(t)#5P@ I (t)uVs(t)#Ps@Vs(t)#, the latter definition
can be recast in the form
9-2
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INFORMATION TRANSFER WITH RATE-MODULATED . . . PHYSICAL REVIEW E64 021909
MT@ I ~ t !:Vs~ t !#5E E D@ I ~ t !#D@Vs~ t !#P@ I ~ t !,Vs~ t !#

3 log2S P@ I ~ t !,Vs~ t !#

P@ I ~ t !#P@Vs~ t !# D . ~6!

This latter form makes transparent the fact that the mu
information is a symmetric measure with respect to its ar
ments and thus presents a nonlinear cross correlation
tween I (t) and Vs(t). This information measure is in fac
bidirectional: ‘‘What the output signal knows about inpu
the input signal knows about output.’

It is not difficult to prove that the averaged informatio
gain gives an upper bound for the mutual information@15#,
i.e.,

MT@ I ~ t !:Vs~ t !#<^KT@Vs~ t !#&s . ~7!

This inequality is very important in the practice since not t
mutual information in itself presents the main interest, b
rather the information capacity. This latter quantity is defin
as the maximum of mutual information over all possible
put signals with the fixed root mean squared~rms! amplitude
of signals ~cf. @17,19#!. The information capacity sets th
theoretical maximumfor information that can be transferre
across the information channel within the given time inter
@0,T# @19#. In many cases it is simpler to find̂K@Vs(t)#&s
and to establish in such a way the upper bound for the in
mation capacity. Moreover, in some cases~e.g., for weak
signals! this upper bound can coincide within the accuracy
the weak-signal approximation with the information capac
@15#.

In the experimental realm, the finding of mutual inform
tion constitutes a rather formidable task because it assu
the two ensemble averaging, both over input~voltage! and
output ~current! signals. On the contrary, the practical fea
bility of the information gain is beyond questions. This ta
can be accomplished, e.g., by building up the correspond
histograms of the current realizations with the given tim
resolutionDt, like in Ref. @14#. Then, there exist 2N ~where
N5T/Dt) different realizations of ‘‘all-or-nothing’’ current
records and in practice the respective functional integra
approximated by a multidimensional sum. The actual va
of the information gain can be estimated from the calculat
of the corresponding approximations at differentDt by ex-
trapolating those to the limitDt→0. Unlike to the case oft
information in Refs.@13,14# ~where such a limit does no
exist in principle! the discussed limit should exist for th
information gain. The information gain presents thus a r
sonable alternative to thet information that isde factothe
most popular information measure at present@13,14#.

IV. EXACT EXPRESSION FOR INFORMATION GAIN

The precise meaning of the functional integral in Eq.~4!
for the studied model is as follows
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KT@Vs~ t !#5Q0„TuVs~ t !…log2

Q0„TuVs~ t !…

Q0
(0)~ t !

1(
s51

` E
0

T

dtsE
0

T

dts21•••

3E
0

T

dt1Qs„t,ts , . . . ,t1uVs~ t !…

3 log2

Qs„t,ts , . . . ,t1uVs~ t !…

Qs
(0)~ t,ts , . . . ,t1!

. ~8!

The calculation of integrals and series in Eq.~8! with the
probability densities~2! is straightforward due to the factor
ization property in Eq.~2! and yields our main result

KT@Vs~ t !#5
1

ln 2E0

TF r ~U0!2r ~ t !1r ~ t !lnS r ~ t !

r ~U0! D Gdt.

~9!

Note that the result~9! is exactwithin the considered model
It can also be obtained from one found previously for t
two-state Markov model in Ref.@15# in the limit where the
two-state system is symmetric@Po(t)5Pc(t)51/2# and the
signal modulates the height of the activation barrier. Us
this result we can address the general case of SR inclu
nonstationary signals of finite duration, i.e.,nonstationary
SR. In particular, for weak signals we obtain approximate

KT@Vs~ t !#'R~U0 ,D !j. ~10!

In Eq. ~10!,

R~U0 ,D !5
1

2 ln 2
r ~U0!S ]g~Vs!

]Vs
D

Vs50

2

~11!

is the form factor, which characterizes the system, and

j5E
0

`

Vs
2~ t !dt ~12!

is the total intensity of input signal. For the model in Eq.~1!
we obtain

R~U0 ,D !5
1

2 ln 2
r 0

q2

D2
expS 2

U0

D D . ~13!

The form factor in Eq.~13! exhibits a typical stochastic reso
nance behavior versus the noise intensityD.

V. RATE OF INFORMATION GAIN AND THE
SIGNAL-TO-NOISE RATIO

Let us consider now the case of a periodic input sig
with the frequencyV and the amplitudeA,

Vs~ t !5A cos~Vt !. ~14!

Then, one can define the rate of information gain
9-3
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RI5 lim
T→`

KT@Vs~ t !#

T
. ~15!

For the model in Eq.~1! an elementary calculation from Eq
~9! yields

RI5
1

ln 2
r 0 expS 2

U0

D D F12I 0S qA

D D1
qA

D
I 1S qA

D D G ,
~16!

whereI 0,1(z) are the modified Bessel functions. Note that t
rate of information gain has the same dimensionality of f
quency as SNR. Thus, it is interesting to compare the rat
information gain and SNR for the considered model. T
corresponding expression for SNR has been obtained in
@8# and in our notation~which follows the review@1#! reads

RSN54pr 0

I1
2S qA

D D
I0S qA

D D expS 2
U0

D D . ~17!

By comparison of Eq.~16! and Eq.~17! in the case of weak
signalsqA!D one can establish the following important r
lation

RI'
RSN

4p ln 2
, ~18!

where both theRI andRSN are proportional toR(U0 ,D) in
Eq. ~13! and both exhibit stochastic resonance.

It is worth noting that for weak Gaussian signals with t
rms amplitudeArms5A, the information gain in Eq.~18!
defines, after averaging over the signal realizations, also
information capacity~with the factor of 2@29#!. This fact can
be proven making use of the Shannon’s formula for the m
tual information rate@19#. The Shannon’s formula has bee
originally derived, strictly speaking, for Gaussian inform
tion channels only~cf. Ref. @30#!. However, it has been
shown in Ref.@10# that the Shannon’s formula applies al
for the considered Poissonian information channel if the
put Gaussian signals are weak.

To sum up, in the limit of weak signals the knowledge
SNR for a harmonic signal completely determines both
rate of information gain for the periodic signal and the info
mation capacity for the Gaussian aperiodic signals. Besi
SNR characterizes also the information gain for small sign
with finite duration. This remarkable result is illustrated
Fig. 1.

Nevertheless, for strong signals the analogy between S
and information gain breaks down. To demonstrate this
we used the following parameters that resemble~although
arenot directly related to! that used for the Schmitt trigger i
Ref. @21#. We set the barrier height toU05150 meV, the
gating charge to the elementary charge,q5e, and the signal
amplitude toA5100 mV. The numerical comparison be
tween the rate of information gain and SNR is depicted
Fig. 2. It explains in principle thenonequivalencebetween
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the SNR and the information gain~Kullback entropy! for
strongsignals, beyond the linear response regime, which
been observed in the numerical experiments@21#. It is inter-
esting to note that both in this work and in Ref.@21# the
maximum of the information gain is attained atD
'45 meV~cf. Fig. 4 in @21#!, while the maxima of SNR are
somewhat different. One has to stress that it is not possib
compare the both situations directly, because in the cas
Schmitt trigger the input signal modulates the energy diff
ence between two states, rather than the energy barrier
tween two states with equal energy. Nevertheless, the gen
tendency becomes rather obvious.

The nonequivalencebetween the information gain an
SNR is especially clearly demonstrated in Fig. 3 for the s
nal amplitudeA5150 mV. In this case, the maximum in th
information gain disappears, whereas theRSN still exhibits a
maximum. For the suprathreshold amplitudeA.158 mV
the stochastic resonance in the signal-to-noise ratio dis
pears as well~not shown!.

VI. CONCLUSIONS

In this work we have addressed a simple model of s
chastic resonance in sensory neurons@8# or ion channels@9#
from the point of view of the information transfer. The mod
considers some shot-noise-like events as nonstationary P
son process with the signal-dependent spiking rate. This
depends on the background noise intensity as a param
i.e., it is assumed that neither background noise, nor sig

FIG. 1. Dependence of the rate of information gain and
scaled signal-to-noise ratio on the background noise intensityD in
the case of a weak periodic signal. The barrier height is set toU0

5150 meV.

FIG. 2. Same as Fig. 1, in the case of a strong signal.
9-4
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INFORMATION TRANSFER WITH RATE-MODULATED . . . PHYSICAL REVIEW E64 021909
can introduce the correlations among spikes. Of course,
is an idealization. Nevertheless, such a simple model is v
useful as one of the basic models for the stochastic re
nance, cf.@1#. The meaning of the noise is context depe
dent. In application to the ion channels, it is the therm
noise. If the external noise is added@9#, one assumes that th
corner frequency of this added noise is so high that it res
in the renormalization of the thermal noise intensity only.

The main result of this work is the expression~9! for the
information gain that measures the lowering of the entro
of the Poissonian spike train due to the applied signal. Si
the signal can be of arbitrary form and duration, our res
allows to quantify thenonstationarySR. Here, in the case o
weak signals, an approximate result in Eqs.~10!–~12! readily
follows. This latter result has a remarkable feature. The
currence of stochastic resonance depends merely on the
factor ~11!. In the case of an Arrhenius rate in Eq.~1! this
form factor has the same functional form asRSN in Ref. @8#

FIG. 3. Same as Fig. 1, in the case of signal with the thr
hold amplitude.
v.
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and displays a typical SR behavior, like in Fig. 1. Anoth
interesting point is that the information gain depends in
discussed case only on the total intensity of the signal gi
by Eq. ~12!. This means that the signals of equal intens
produce equal information gains, no matter how different
form of signals is.

Furthermore, the consideration of the rate of informati
gain in the case of a periodic signal allows one to find
similarity and the distinction between the rate of informati
gain and the signal-to-noise ratio. Namely, we have sho
that in the case of a weak signal both measures behave i
tically in their dependences on the noise intensity, cf. Fig
This similarity is remarkable indeed, because the meanin
both measures is quite different. In fact, the discussed s
larity is virtually known in the literature~although for a dif-
ferent information measure—information capacity,
@19,4,10,30#!. However, in this work we have explicitly
shown that this similarity holds in the case of weak sign
only. For strong signals it is not valid anymore, cf. Fig.
Fig. 3, and Eq.~16! vs Eq.~17!. This fact becomes especiall
clear for the signal with the threshold amplitude~Fig. 3!,
where SNR still displays the stochastic resonance beha
whereas the information gain does not.
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